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SUMMARY 
The dynamical theory of the motion of a body through an 

inviscid and incompressible fluid has yielded three relations : a first, 
due to Kirchhoff, which expresses the force and moment acting on 
the body in terms of added masses ; a second, initiated by Taylor, 
which expresses added masses in terms of singularities within the 
bbdy ; and a third, initiated by Lagally, which expresses the forces 
and moments in terms of these singularities. The present investi- 
gation is concerned with generalizations of the Taylor and Lagally 
theorems to include unsteady flow and arbitrary translational and 
rotational motion of the body, to present new and simple derivations 
of these theorems, and to compare the Kirchhoff and Lagally 
methods for obtaining forces and moments. In contrast with 
previous generalizations, the Taylor theorem is derived when 
other boundaries are present ; for the added-mass coefficients due 
to rotation alone, for which no relations were known, it is shown 
that these relations do not exist in general, although approximate 
ones are found for elongated bodies. The derivation of the 
Lagally theorem leads to new terms, compact expressions for the 
force and moment, and the complete expression of the forces and 
moments in terms of singularities for elongated bodies. 

1. INTRODUCTION 
In the decade from 1920 to 1930 there were published by Lagally, Munk, 

and Taylor a number of hydrodynamic theorems concerning the added 
masses of bodies moving through an inviscid fluid and the forces and moments 
acting upon them. These theorems enable the forces, moments, and added 
masses to be determined when the singularity distributions of sources, sinks, 
and doublets within the body, which may be considered to generate the 
potential flow about it, are known. Since, for the important class of elon- 
gated bodies, simple approximations to the singularity distributions are 
given directly in terms of the body shape, these theorems have furnished a 
powerful means of investigating the forces and moments acting on such 
bodies, especially near a.free surface. Until recently, the scope of the afore- 
mentioned theorems has been limited: that of Taylor (1928) to only one 
kind of added-mass coefficient, and that of Lagally (1922) to steady flow only. 
Birkhoff (1953, p. 161) and Landweber (1956) have succeeded in generalizing 
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Taylor’s theorem to apply to all the added-mass coefficients except those for 
pure rotation, and Cummins (1953) in generalizing Lagally’s theorem to 
apply to cases of unsteady flows. 

The Taylor theorem and its generalizations have heretofore been 
concerned with the added-mass coefficients corresponding to the motion of 
a single body in an otherwise undisturbed and unbounded fluid. The 
extension of the theorem to the important cases where external singularities 
and other boundaries are present is highly desirable. 

Cummins was able to express the force and moment on a body in terms 
of the strengths of the singularities, except for one term in the expression 
for the moment-an integral over the surface of the body with integrand 
linear in the potential. As will be seen, this single unresolved term is 
intimately related to the missing relations in the generalization of Taylor’s 
theorem. The discovery of the latter would complete the generalizations 
of both the Taylor and Lagally theorems. 

The present work, then, has several purposes. 
(1) The first is to extend the Taylor theorem to include cases with 

external singularities and boundaries and new results concerning 
the missing relations between added mawes and singularities. The 
latter will be derived for ellipsoids and for elongated bodies, but it 
will be proved that such relations do not exist in general. Also the 
opportunity will be taken to present, new, short, and simple proofs 
of the theorem for both two and three dimensional flows. 

(2) The second is to consolidate and extend Cummins’ results and to 
present a simpler derivation of them. An important secondary 
motive for this part of the work is to popularize this powerful theorem, 
which in its present form has been applied only by Cummins himself. 

(3) The third is to examine the interconnections, if any, between the 
Taylor theorem (relating added masses to singularities), the Lagally 
theorem (relating singularities to forces), and KirchhoFs equations 
of motion (relating forces to added masses). 

2. FORMULATION OF THE PROBLEM 

We are concerned with the interactions of a fluid with a rigid body 
moving through it. The fluid is assumed to be incompressible and inviscid, 
the flow to be irrotational and, in general, unsteady. We shall suppose that 
the unsteadiness may be due to the time dependence of the linear or angular 
velocities of the body or to the presence of external boundaries or flow- 
producing mechanisms which may themselves be moving in an arbitrary 
manner. 

The flow may be considered to be generated by singularities, and the 
singularities considered will be isolated sources or sinks, doublets, and 
continuously distributed sources or sinks. Continuous distributions of 
doublets are excluded from consideration because they can be replaced by 
corresponding ones of sources and sinks. The symbol rn will denote the 
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strength of a source or sink, ji (a vector) will describe both the strength and 
the orientation of a doublet, and u will denote the volume or area density 
of continuously distributed sources or sinks. 

Cartesian coordinates (fixed in the body) xi (i = 1,2,3) will be used, so 
that the position vector The components 
of the velocity vector U of the origin of coordinates will be depoted by(u,, u2, 
us) and the components of the angular velocity W will be designated alter- 
natively by (w1,w2,w3) or by (u4,u5,u6). The surface of the body will be 
denoted by S, and those surrounding the singularities inside S by S' collec- 
tively. The distance n normal to either S or S' is always directed out of 
that portion of the fluid with which one is concerned. The direction of n 
will be indicated by the unit vector Z with components n, (i = 1,2,3), which 
are given by n, = ax,/&. 

is (xl ,  x2, x3) with magnitude Y. 

The kinematic boundary condition at a point on S is given by 
84 - - = ( i i + G x r ) . i i = u , n , ,  
an 

in which #I is the velocity potential satisfying the Laplace equation, and the 
components of 7 x Z are denoted by (n4, n5, n6). Here the summation con- 
vention has been adapted and the Greek subscripts range from 1 to 6. For 
convenience of presentation, Greek subscripts will range from 1 to 6, whereas 
Latin ones will range over 1, 2, and 3 only, unless otherwise stated or when 
summation signs are expressly used. 

The velocity potential 4 may be considered to be composed of a part due 
to the motion of the body alone, when all other boundaries and external flow 
producing mechanisms are at rest, expressible in the form u,+, after 
Kirchhoff, and a part do due to the motions of the latter when the body is at 
rest, i. e. 

Then, on S, from (1) and (2), 

(1) 

4 = u, 4, + 40. (2) 
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The boundary condition (1) may also be expressed in the alternative form 

where v, = - a+/axi is the i-component of the velocity at a point of the fluid, 
and eijk is zero if any two of the indices i, j, k are alike, and + 1 or - 1 ac- 
cording as the indices are in cyclic or anticyclic order. Hence, the boundary 
condition becomes 

vi ni = ( u i  + Eijk W j  x k ) n ,  

n, = 0, < = - vi + ud f 4 j k  wj x k  s (4) 
Since the coordinate axes are in motion, the Bernoulli equation for the 

pressure is, from Lamb (1932, p. ZO),  

where p is the density of the fluid. 

T B  of the displaced fluid, considered as a rigid body. 
integrand in 

where d7 denotes an element of volume of the body, readily yields the 
quadratic form 

It will also be convenient to have the expression for the kinetic energy 
Expansion of the 

2TB = p J ( U i  f Eijk Wj xk) (Ui  + Eilm wi Xm)dT,  

2TB = B , p  U, 218, 

Bij = B& , 
(6) 

} (7) 
B,fi = B p ,  , Bi, 3 + j  = B E i j G k  9 

B3+j,3+k = f / ( x m x m 6 , k - x j x k ) ,  
where B is the mass of the displaced fluid, Sij is the Kronecker delta, and 
x k  is the k-component of the centroid of volume in the body. 
- 

3. MATHEMATICAL PRELIMINARIES 

In this section will be collected various mathematical theorems and 
results which will be required in the subsequent sections. 

3.1. Potential functions 
Let + be a potential function which satisfies Laplace’s equation at points 

where no singularities are present, and which, in regions where there is a 
source distribution of strength u, satisfies Poisson’s equation 

- -ha. a9 m- 
In  the neighbourhood of a point source of strength m at the point with 

coordinates xi,, the potential may be expressed in the form 

or, since +’ is analytic in the neighbourhood of xi, ,  
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and similarly the velocity field is expressible in the form 

In the neighbourhood of a point doublet of vector strength at- the point 
xid, the potential may be expressed in the form 

or, since 4’ is analytic in the neighbourhood of xid , 

3.2. Gauss’s and Green’s theorems 
Let q4(x1, x,, x3 )  be a function analytic in a region R and on its boundaries, 

where the region R is bounded externally by a closed surface Sand internally 
by a set of spheres whose surfaces are collectively designated by S’. The 
sense of the normals to the boundaries outward from the region R is 
taken as positive. 

We can now state Gauss’s theorem in the form 

where the integral on the left extends over the surface of the outer boundary, 
the last integral over the surface of the spheres, and the first integral on the 
right is a volume integral over the region R .  Also, if #(xl ,  x,, x3)  is another 
function analytic in R and on its boundaries, we can state the second of 
Green’s theorems in the form 

or, if 9 satisfies Poisson’s equation and $ Laplace’s equation, 

3.3 Boundary conditions and the Bernoulli equation 

(5) will be required. 
Various partial derivatives of the quantities Vi and W defined 

We readily obtain 
These are given in this section, 

a vi avd - = - -  ax, +Eiik mi, 

If 4 satisfies Poisson’s equation, we have, when K = i, 

(17) 

n (4) and 

a vi 
axi - = -ha. 
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Next, if 4 satisfies Poisson's equation, noting that avJax, = av,/axi, and 
applying (19), we obtain 

Then, from (27) we obtain 

But, substituting for V,, and simplifying, we have 

34 
%k( 5 vk - €khn x j  vl = Etfk(Ui Ok + 0 ax, - xm>- 

Hence 

4. ADDED MASSES 

If we consider the kinetic energy T of the fluid due to the motion of the 
body when all the other boundaries and flow-producing mechanisms are at 
rest, we have the well-known formula 

From (1) and (2)  it follows that 

2 T =  A,lg~~~lg,  (23) 

(24 ) 

in which the added masses Aab are given by 

Aalg = P 1 4a.p dS,  AajJ = Alga. 

Can the added masses be expressed simply in terms 'of the singularities 
inside the body under consideration as some of them (Aai) were by Taylor, 
Birkhoff, and Landweber for a body moving in unbounded fluid ? This is 
the chief concern of this section. In  the following, two-dimensional and 
three-dimensional flows will be discussed separately. Two dimensional 
flows are discussed not only because the use of function-theoretic methods 
enables one to solve the problem for two dimensions from an entirely new 
approach and in a singularly simple manner, but also because simple relatian- 
ships between Amp and the singularities can be shown to be non-existent for 
pure rotations. 

4.1. Two-dimensional flows 
With every 

velocity potential +a (a = 1 ,  2, 6 throughout the discussion for two- 
dimensional flows) one may associate a stream function & such that the 

The complex variable z is defined, as usual, to be x1 + ix,. 
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Now, if s denotes the curvilinear complex potential is w, = #,+i#,. 
distance along the body, we have nl ds = dx, , n2 ds = - dx, , and since 

A,, + iA,, = p 4,  n, ds + ip 4, n2 ds = i p  # 6, dx I # 

A,, + B,, + i ( ~ ,  + B,.J = - ip $ w,  dz, 

Ba2 = p $ x2 n, A. 

= - i p [ f w , d z - i $ # , d z ] =  - i p # w , d z - p  f m a d s .  

Thus, 

(26) 

(27) 

Bij = B6,, Be1 = -B22, B,z=B%l, (28) 

in which 

B,, = p xl n, ds, 

By Gauss’s theorem, we have 

where B is the mass of the displaced fluid per unit length of the body, and 
x,, x2 are the coordinates of the centroid of its area of section. 

If there 
is a doublet of strength pa inside S, where in general p, is a complex number, 
there is 3 term p,/(z - zd) in w, and its contribution to the integral in (26) is 
27rp, i, by Cauchy’s theorem ; and if there is a source of strength ma at x,, 
inside S, there is a term - ma log(z - x,) in w,, and its contribution to the 
same integral is 2nm, x, i .  Thus, extending the result to distributed sources 
and sinks of strength 0, per unit area of section, we have 

Equation (26) readily yields the generalized Taylor theorem. 

in which d A  is an element of the area of section over which the integral 
extends. Equation (28) gives precisely the generalized Taylor theorem for 
two-dimensional flows. 

The added mass 
in question is 

What, then, about the added mass for pure rotation ? 

= p $ 4 6  n6 ds = p $ 4dx1 n 2 - x 2  nl) ds = - p  $ 4dx1 dxl +x2 dx2)  

where z* is the complex conjugate of x. But, putting 

F,(s) = J8 xln,ds, F2(s) = f x2n2ds, 
0 0 
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integrating by parts, and applying (25), we have 
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f $6(%2 dxl - x1 d x 2 )  = - n1 + x2 #2)  ds f 
= H(* + gl0 - 2$,(0)1 f (xl nl + x2 nz) ds 

- Q $ (x? + x;)(x1 n, + x2 n2) ds, 

where the index 0 denotes initial values along the path of integration. 
Applying Gauss's theorem, we obtain 

$ $6(%2 dxl-  2, dx2) = A[(x?+xE),-2$,(0)] - 2 j ( x f + x ; )  dA. 

We may take $,(O) = 0. 
and let rg = (*+g),,. 

Also, let yg be the radius of gyration of the area, 
Then we have, finally, 

1 (30) J '  A66 + = pA(r: - r,") - pc%{ $ W6 X*dZ 

It is now seen, by expressing w, in terms of its singularities, that (30) 
gives a linear relation between A,, and their strength. If, for instance, 
among the singularities of w,, there are doublets of strength pi at x = xi, 
each would give rise to a term 

which, however, cannot be expressed in the form pi f (zl, x2, . . .) independent 
of the shape of the profile; for otherwise, as a consequence of Morera's 
theorem of complex variables, the integrand would be an analytic function, 
which it clearly is not. In  this sense a simple relationship like those of (29) 
does not exist for 4 6 .  The writers have laboured much and in vain in 
their endeavour to establish the missing simple relationships for pure 
rotations, and it was not until equation (30) was reached that they recognized 
the futility of their efforts. 

4.2. Three-dimensional jlows 

singularities, we can apply (17) to obtain 
For the fluid inside S and outside the small surface S' around the interior 

where oa is the distributed source strength corresponding to 
shown by Landweber (1956), 

Here, as 

pIxj%dS = -p I xjna d S  = -Baj. (32) 
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Moreover, for the source, 

x,$ dS' = h Z m a  xi, . (33) 

For the doublet pa , with components pai , the potential is given by (13), from 
which, writing 

a+a 34; 2 X j d  ni + &ai ni ni 
4 ' %an = 4,, - 

and noting that J x,(a+'/an) dS' vanishes in the limit as I d  approaches zero, 
and Jni e d S  and Int n5 rda dS' vanish because of anti-symmetry except 
when i = j  in the last integral, we have 

wherej is not summed in the second member of (34). Next, considering 
- J +a n, d S ,  the contribution to it by a source is zero, since its potential 
varies inversely as the radial distance I, from it, whereas dS varies as Y:. 

The contribution of a doublet is 

Substituting (32) to (35) into (31), we obtain the generalized Taylor theorem 

4.3. Evaluation of ' missing' added-mass relations for an elongated body 
In this section simple expression for the added-mass coefficients for 

pure rotation in terms of the singularities within the body, will be derived 
for ellipsoids, and approximate ones for elongated bodies. 

4, + B, j = ~ P [ S %  xi d7 f r, (m, x,, + P a J .  (36) 

From (17) we have 
a 

,/ nk + x k  dS = [ d ( x j  x k )  dS 

= I X . X  !?$ d S + h  ( O X j X k  dT+X ( m X j X k + p j X k + p k X j ) ] ,  (37) 
a [, 

where the integrals over the spherical surfaces about the isolated singularities 
have been evaluated by a now familiar process and the subscripts s and d on 
the coordinates have been omitted in the last terms. Also for the first 
integral on the right in (37), we readily obtain from (3) and (16) the matrix 
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where i, j ,  k are different and not summed. 
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Thus we may write 

P Bi+ i ,a  +&pzjka> 1 
(39) 

J 

Also we have 

A ,  3+i = P j +a n3+i d~ = Peijk j +a xi nk d ~ .  (40) 

Consider the case of an ellipsoid rotating in an infinite fluid in which no 
other boundaries or singularities are present. Then we have, from Lamb 
(1932, p. 154), when the coordinate axes are take6 along the principal axes, 

where C,, C,, c6 are constants, and hence, from (39), (40), and (16), for the 
case a = 6, i = 3, we obtain 

$4 = c4 x2 x3 3 4 5  = c5 x3 x19 4 6 =  c 6 x 1 x 2 ,  (41) 

c6 B66 = Bt& + 4"Pz126 

- c6 B& > (42) 
or eliminating c6, 

Similar expressions may be written by symmetry for A,, and Ad4. The 
coefficients A,, , A,, , A,, are zero for the chosen orientation of the coordinate 
axes. Thus we have found simple relations between the rotational added- 
mass coefficients and the singularities for ellipsoids, albeit not as simple as 
those in (36). 

When the x,-axis of the ellipsoid is much greater than the others, and 
the x2- and x3-axes are nearly equal c6 is very nearly 1, A,, + - BA6 from 
(42), and the left member of (43) may be written as 

which is of the form that an extension of (36) would suggest. 

nearly elliptical sections in the planes x, = constant. 
directly and exactly 

Next let us consider a body elongated in the direction of the x,-axis with 
From (39) we obtain 

'66- Bki + 2P I 4 6  x2 dS = &Pz126 * (44) 

For an elongated body the third term on the left is small compared with the 
other terms, so that only a small error would be introduced by assuming an 
approximate value for $6 in that term. Since the section is nearly elliptical, 
let us assume $s=cX,x,. Then 

2 1 46x2nl dS =i; 2C xi dr = -2% J' x g d r ,  i 66 

whence, substituting into (44) and simplifying, we obtain 
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The corresponding formulae for A,, and A,, can be written down from 
symmetry. As in the case of the elongated ellipsoid, when the section is 
nearly circular we have also 

and similarly for A,, . For A,, the term corresponding to the integral in 
(44) is of the same order of magnitude as the others, so that the errors in the 
foregoing approximations would be greater than for A,, or 4 6 .  

+ B66 kp ’126 (46) 

Similarly we have, from (39), 

(47) 

in which the third term may be expressed approximately in the form 

2p +6 x1 n3 d S  = 2pC xf xt n3 d S  = 0. I 
Hence (47) becomes 

A56+B56 = 4nP 2316. (48) 
An alternative relation for A,, may be derived by interchanging the 

roles of the indices, and similar expressions may be obtained for A,, and A,,. 
These as well as the relations for A,, , A,, , and A 6 6  may be summarized in 
the form 

Apv + Bpv = k p e i i k  X i b  (/3= 3 + j ,  y = 3 + k), J 
in which i, k are not summed and i, j, k are different. 

4.4 Linear and Angular Momentum 
It  will be of interest to express the integrals .p J +ni d S  and 

pijk j #xjnk d S  in terms of the added-mass coefficients and the singularities 
within the body. By applying Gauss’s transformation to the region exterior 
to the body it is seen that the sums of such integrals over all the boundaries 
give the linear and angular momenta of the fluid. 

The velocity potential, in the form given by (4), may be further resolved 
by writing 

where 4; is the potential of the part of (b0 due to external singularities, and 
4; that due to internal singularities. 

$0 = 4; + 44, (50) 

We have then, from (24), 

j +ni d s  = ua A , ~ + ~  j (+;++;)ni d s .  (51) 

But, by Green’s reciprocal theorem and (17), 

F.M. Y 
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where a, is the strength of the distributed singularities within the body 
corresponding to #o. Thus, substituting (52) and (53) into (Sl), applying 
the boundary condition (3), and noting that the last integral over the spheres 
about the singularities is of the same form as that evaluated in (31), we obtain 

where m, and poi are the strengths of the sources and doublet components 
within the body corresponding to c # ~ .  Hence, applying (36.), we obtain 

- h p [  1 ax, dr + C (mx, +pi) , 1 (55) p +ni dS+u, B,, - I 
where u, m, and pi denote the totality of all the distributions and singularities 
within the body. This shows that the value of the momentum integral 
depends simply upon the internal singularities. 

Recalling the 
definition n3+i = Eijk x, nk , we have, putting /? = 3 + i, and applying (24) 

Next let us consider the angular momentum integral. 

and (31, 

P%k \ +%ink dS = P[ (% $a+$Oo)np dS 

' = u,Aap-p I (&+&)!$dS. (56) 

But, from (17), we have 

Also, putting +j = 4; +$, where 4; is the part of 4 p  due to external 
singularities, and 4; that due to the internal ones, we have from (17) and 
Green's reciprocal theorem 

whence, applying the boundary condition (3), evaluating the integrals over 
S' by the usual procedure, and substituting into (56), we obtain 
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I t  will usually be convenient to choose the origin of coordinates so that 
the term B ~ ~ ~ ~ u ~ 2 ~  vanishes, as is done in the equations of rigid body 
dynamics, where this term also occurs. 

For the elongated bodies considered in the previous section we can 
substitute the approximate values given in (49)for A,+, 3+i. Thus, applying 
the simpler of the approximate relations for , 4 6 9  we obtain 

5. THE GENERALIZED LAGALLY THEOREM 

5.1. Force on the body 
From ( 5 ) ,  the force on the body is given by 

(58) 
d -  

= - p ; i t , J  +ni d S + p  j W n i  dS, 

But, from (16) and (20), 
where the prime in t' denotes that the variation with time is relative to a 
moving coordinate system. 

j W n i  d S  = I Z d r - j W n ,  dS' 

Also, applying (4) and (16), we have 

Hence, substituting into (58), we obtain 

The sum of the first two terms of (59) is seen to be the absolute time 
derivative of the momentum vector integral - p J+nidSfor whichvalues were 

Y 2  
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given in (54) and (55). 
procedure, we obtain the expression for the force 
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Thus, evaluating the integrals over S‘ by the usual 

or, if (55) is used in (59), and (7) I s  applied to evaluate 

U, B,, = ~j Bji + wj  B, + j,i = B(u + Eijk ~j X k) = BZi , 

where Gi is the i-component of the velocity of the centroid, then 

If it is desired to use relative rather than absolute time derivatives, we may 
employ alternative expressions of which a typical one is 

Furthermore, it should be noted that the strengths of the singularities 
occurring in (60) and (61) are those due to the superimposed effects of all 
the velocity components of both the body and external boundaries and Aow- 
producing mechanisms, in contrast with the singularity strengths corre- 
sponding to unit magnitude of a single velocity component of the body 
which occur in the generalized Taylor formulas for the added masses. 

I t  is important to observe that, in computing vi and av$x, in (60) and (61), 
the contributions from all the internal singularities may be omitted. The 
reason for this is that the mutual contributions of the velocity fields of a 
pair of internal singularities to the expression for the force on the body are 
equal and opposite and hence annul each other. This introduces a signi- 
ficant simplification in the calculation of the force from these equations. 

Equation (61) is essentially equivalent to the corresponding result by 
Cummins (1953). It differs from it in the following respects. 

(1) A new term, 16napupi/3, has appeared. This did not occur in the 
treatments of Lagally or Cummins because they did not consider the 
case of simultaneous occurrence of distributed and isolated singu- 
larities. 

(2) The inertia term in Cummins’ equation (8) and the terms of his 
equation (48) for the vector F3 have been replaced by the first term 
of (61), which is seen to represent the inertia of the displaced fluid. 

(3) The expression for the force has been expressed in a much more 
compact form. 
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5.2. Moment on the Body 
The moment on the body is given, from ( S ) ,  by 

M i =  - Eljk I $Xi nk d S  = -PEi jk  l(g - W ) x j  nk dS 

333 

From (16), (21), and (4), we obtain 

- E i j k  1 ( X j  V k  vi n, f Uj $nk + W j  $nS+k + W X j  71k) dS'. 

Hence, evaluating the integrals over S' by the already frequently applied 
procedure and putting 

the expression for the moment becomes 

Mi = -pcijk[$ 1 $xjnk dS+uj  (63) 

where M,,(v) denotes the Lagally moment for steady flow, 

This differs from the expressions derived by Lagally and Cummins for 
steady flow in the appearance of the last term, because they did not consider 
the case in which distributed sources and isolated doublets are simul- 
taneously present. Except for this term, (63) may be shown to be equi- 
valent to the result derived by Cummins for unsteady flow. Cummins, 
however, did not succeed in expressing the moment of momentum integral 
in (63) in terms of singularities, so that its time derivative occurs explicitly 
in his final result. As in the case of the Lagally force, the contributions to 
v from internal singularities need not be considered in computing the 
Lagally moment since they annul each other in summation. 

Now, substituting for the momentum and moment of momentum 
integrals in (63) from (55) and (57a), and noting from (7) that 

we obtain 
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where ,9 = 3 + i, and M,(w - u) denotes the value of the Lagally moment 
when the velocity at the singularity relative to that of the body is used. 

For elongated bodies with nearly ellipsoidal sections, substituting for 
A3+, 3+j from (49)) we can obtain an approximate but complete expression 
for the moment in terms of singularities. Thus, applying (57b), we have 

A similar expression for M2 can be written down by symmetry. In the 
application of (64) and (64 a) it will usually be convenient to make the first 
term vanish either by choosing the origin at a point of zero acceleration, or 
at the centroid, or at a point whose acceleration vector passes through the 
centroid. 

6. COMPARISON OF THE RESULTS OF KIRCHHOFF, TAYLOR AND LAGALLY 

Kirchhoff's equations of motion of a body through a fluid express the 
force and moment acting on a body in terms of its added masses. Since 
the generalized Taylor theorem expresses the added masses in terms of the 
singularities, it appears that, by substituting these expressions for the added 
masses into Kirchhoff's equations, it might be possible to derive identical 
formulas to those derived above for the forces and moments in terms of the 
singulari ties. 

First let us consider one of Kirchhoff's equations (Lamb 1932, p. 168)) 
for the case when the fluid is disturbed only by the motion of the body, 

where T is the kinetic energy of the fluid and the prime denotes that the 
time derivative is taken relative to a moving coordinate system. Then 

On examining the expression for the corresponding term in (60), it is seen 
that the terms in the first bracket vanish since, in the present case, there are 
no external singularities and consequently no internal images of them. The 
terms in the second bracket vanish because the mutual contributions of the 
internal sources and doublets to the force on the body annul each other. 
Consequently, (60) and (66) are seen to be in agreement. 

More generally, if it is supposed that other boundaries are present, but 
that only the given body is in motion, the force on the body due to the fluid 
may be obtained by applying Lagrange's equations (Lamb 1932, p. 188) in 
the form 
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where ti ( i -  1,2,3) are the coordinates at the origin of the coordinate system 
attached to the body, relative to an inertial system. Then 

d 1 aA, 
dt 2 ati u , u ~ *  Fi = - - (u, Aai) + - - 

Comparison of this result with (60), in which the first bracket vanishes in 
the present case since the external boundaries are at rest, shows that the 
two expressions for the force would be identical in form only if 

or, putting u = u, u,, vi = up vpi, etc., only if 

But substitution of the generalized Taylor formula for the added masses in 
terms of singularities into (68) does not seem to yield identically the genera- 
lized Lagally formula for the force ; in fact, such a complete substitution 
could not be made since not all the added masses can be so expressed. Thus 
the method of Kirchhoff-Lagrange appears in general to furnish an alter- 
native (and more limited) method of computing the forces on a body. 
Nevertheless, (69) must be valid, since the force may be obtained by either 
method, so that we have expressions for the gradients of the added masses 
in terms of the singularities. 

It will be instructive to illustrate both methods by computing the force 
on a sphere A of radius a moving with velocity u1 along the line of centres 
away from a fixed sphere B of radius b. Let c be the distance between 
centres at a given instant. Using the method of successive images, we 
begin with a doublet of strength po = &ul a3 at the centre of A. Its first 
image in B is a doublet of strength 

b3 u1 a3b3 p1 = - c3po = - - 
2c3 

at a distance t1 = c -b2 /c  from the centre of A. 
image in A, a doublet of strength 

This gives a second 

b3 u1 asb3 
El.2 = - z p l  = 2(C2-b2)3* 

To this order of approximation, from (36) the added mass A,, is 

[ (cz-bS)* 3asb3 1 ' A - - B ~ ~  + k p  Po + Pa = $$.rrpaa 1 + - 
u1 

11 - 

and (68) gives for the force 
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In  order to apply (60) we also need the velocity v', due to the first doublet 
image pl, along the line of centres, 

where x is distance measured from the centre of B. 
V' = Z / L ~ ( X  - b ' / ~ ) - ~ ,  

Then 
av 1 3 u1 - -  - 
ax (XC-b')'' 

In order to obtain the same order of approximation as above, we need com- 
pute only the force on the original doublet. We obtain from (60) 

which agrees with the result above. 
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